
HamPath: On solving optimal control problems by indirect
and path following methods.

HamPath 3.0 - User guide

Jean-Baptiste Caillau, Olivier Cots, Joseph Gergaud

Jean Matthieu Khoury

September 20, 2016

Contents

1 Introduction 2

2 HamPath overview 4
2.1 Presentation of the overall strategic and algorithmic approach 4
2.2 Features . 8

2.2.1 Schematic view of HamPath . 8
2.2.2 Interface . 8
2.2.3 Core of HamPath and thirdparty . 10
2.2.4 Additional information on HamPath code: get examples, helps and options. 10

3 Simple examples 12
3.1 A simple shooting problem . 12

3.1.1 User implementation of hfun Fortran routines. 12
3.1.2 User implementation of sfun Fortran routines. 13
3.1.3 User implementation of the main file. 14

3.2 A multiple shooting problem . 17
3.2.1 User implementation of hfun Fortran routines 17
3.2.2 User implementation of sfun Fortran routines. 18
3.2.3 User implementation of the main file . 19

4 Goddard problem 21
4.1 A Bang-Bang solution: tf “ 20. 22

4.1.1 User implementation of hfun Fortran routine 22
4.1.2 User implementation of sfun Fortran routine 23
4.1.3 User implementation of the main file . 24

4.2 A Bang-Singular-Bang solution: tf « 206. 26
4.2.1 User implementation of hfun Fortran routines. 26
4.2.2 User implementation of sfun Fortran routines. 27
4.2.3 User implementation of the main file. 28

4.3 An example of changing structure: an homotopy on tf 29
4.3.1 User implementation of hfun Fortran routines. 29
4.3.2 User implementation of sfun Fortran routines. 29
4.3.3 User implementation of the mfun.f90 file. 30
4.3.4 User implementation of the main file. 31

5 Install file 33

References 34

1 Introduction

The HamPath package [8] is a an open-source software developed to solve optimal control prob-
lems via indirect methods but also to study Hamiltonian systems. HamPath is developed since
2009 by members of the APO (Algorithmes Parallèles et Optimisation) team from Institut de
Recherche en Informatique de Toulouse, jointly with colleagues from the Université de Bour-
gogne. HamPath is distributed under the GNU Lesser General Public License and is free for
both academic and industrial use.

The main use of HamPath is to study and solve optimal control problems of the general form:

(OCP)

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Jpxp¨q, up¨q, t0, tf q “ gpt0, xpt0q, tf , xptf q,Λq `

ż tf

t0

f0pt, xptq, uptq,Λq dt ÝÑ min

9xptq “ fpt, xptq, uptq,Λq, uptq P U, t P rt0 , tf s a.e.,

pt0, xpt0q, tf , xptf qq PMb,

xptq P Xc Ă X, t P rt0 , tf s,

where Λ is a set of parameters, X is the state space of dimension n, U is the control domain,
Mb is a manifold describing the boundary conditions and where Xc is a submanifold of X with
boundary and which defines the pure state constraints. Note that all the sets X, U , Mb and Xc

may depends on Λ, and we assume that the functions f , f0 and g have enough regularity (for
instance at least C1). Besides, problem (OCP) may have mixed state and control constraints
(which is not presented for readibility). We are looking for solutions pxp¨q, up¨q, t0, tf q, for which
the optimal control up¨q leaves in U Ă L8prt0 , tf s, Uq, where U is the set of admissible controls1,
and where the trajectory xp¨q is absolutely continuous.

Here is a non-exhaustive list of possibilities:

• The problem (OCP) may be in Bolza form as presented or in Mayer form, i.e. f0 ” 0, or
in Lagrange form, i.e. g ” 0.

• The system may be autonomous, i.e. it has no explicit dependency on the time t and so
we have fpx, u,Λq and f0px, u,Λq.

• The control domain U may be compact, open (i.e. no control constraints). . .

• The set of state constraints Xc may also be open so we do not have any pure state
constraints. It may also be defined by an equation of the form cpxptqq ď 0, t P rt0 , tf s.

• The initial time t0 and the final time tf may be free or fixed. If they are fixed, then
the cost becomes Jpxp¨q, up¨qq. Besides, if the initial point xpt0q is fixed to the value
x0 P X for instance, then the control up¨q determines uniquely the trajectory xp¨q (by
Cauchy-Lipschitz theorem) so the cost is simply Jpup¨qq.

The optimal solution can be found as an extremal solution of the maximum principle (with
or without state constraints), see [1, 4, 18, 19], and analyzed with the recent advanced techniques

1The set of admissible controls is the set of L8-mappings on rt0 , tf s taking their values in U such that the
associated trajectory xp¨q is globally defined on rt0 , tf s.

2

of geometric optimal control. This analysis has to be performed to reduce the set of candidates
as minimizers. These candidates, given by the maximum principle, are the concatenation of
extremals solution of different Hamiltonian systems. Hence, a key point is to define all the
Hamiltonian systems and to determine the sequence of the arcs. The optimal sequence (or
the optimal structure) may involve bang arcs, where the optimal control norm is constant and
maximum everywhere, or singular arcs with intermediate values on the norm of the control,
or in the case of pure state constraints, we may have more complex structure with boundary
(xptq P BXx) and interior (xptq P X̊c) arcs. When the optimal structure is determined, then we
can define a Boundary Value Problem (BVP) which will be solved using the HamPath software.

Remark 1.1. The (BVP) problem is written as a set of non linear equations we have to solve,
depending on the vector of parameters Λ. The HamPath code is made to solve these non linear
equations (i.e. for a fixed value of Λ) but also to solve a family of optimal control problems, for
Λ taking a range of values.

Remark 1.2. The maximum principle gives necessary conditions of optimality. As in the finite
dimension case (i.e. in optimization in finite dimension), there exists necessary and sufficient
conditions of higher order. In [1], the authors give necessary and sufficient conditions for problem
(OCP) without state, neither control constraints, in the “regular case” for which the optimal
control is smooth. These conditions arise from Jacobi equations and the theory of fields of
extremals, which turns out to be checked by computing conjugate points, see [6]. This may be
done using HamPath.

Here is a list of different studies using HamPath:

• In [11], the HamPath software is explained in details and some examples from quantum
control or space mechanics can be found.

• In [9], the HamPath code is presented to solve regular optimal control problems where the
optimal control is smooth. In this case, we give details on how we can check the second
order conditions of optimality and how we can use differential path following methods to
solve a one-parameter family of optimal control problems.

• In [7], the authors study the contrast problem in medical imaging by nuclear magnetic
resonance. The optimal solution is the concatenation of bang and singular arcs. In this
article, some comparisons with others methods are presented: direct and global techniques.
We may also find some tests of second order of optimality and a study on the influence of
the final time.

• In [10], the author presents an approach which combines geometric analysis and numerical
methods to solve optimal control problems with pure state constraints, using the HamPath

software. Multiple shooting and homotopy techniques are used to build a synthesis with
respect to the bounds (2 parameters) of the boundary sets.

From the user sight. Applying the maximum principle leads to define a set of Hamiltonians
and a Boundary Value Problem, which is described by a set of non linear equations, that can be
grouped together in what we call the shooting equations. HamPath compiles the Fortran codes
of the (maximized) Hamiltonians and the shooting function (defined by the shooting equations)
and produces a collection of Matlab, Octave, Fortran or Python functions (depending on

3

the chosen user interface) which allows first of all to compute the solutions of the Hamiltonian
systems and to solve the implemented shooting equations.

However, it is well known that the main difficulty to solve such problems – with indirect
methods based on Newton algorithms – is to find a good initial guess. So a differential path
following method has been implemented which makes HamPath the natural extension of the
cotcot package [5]. It is also possible to compute Jacobi fields of the Hamiltonian systems to
check order two conditions of optimality and look for conjugate points, as cotcot does.

Organization of the user-guide. Subection 2.1 starts with a presentation of HamPath pos-
sibilities, through the study of a simple optimal control problem. This subsection ends up with
a more detailed explanation of the main tool of the code: the differential path following (or
homotopy) method. Then, in subsection 2.2, a schematic view of HamPath is presented in part
2.2.1 which leads to explain in more details the inputs and outputs of the code in part 2.2.2, and
then the thirdparties used to build the core of the code, see 2.2.3. Section 3 is devoted to the
resolution of some examples. A simple shooting example with only one single arc is presented in
subsection 3.1 (the optimal control is smooth) while in subsection 3.2, the solution of the same
problem but with a different criterium gives a Bang-Bang solution with two bang arcs (i.e. the
optimal control has one discontinuity). Subsection 4 presents how to use efficiently HamPath on
a non trivial example: the Goddard problem. In this case, we first solve a Bang-Bang (BB)
problem, then a Bang-Singular-Bang (BSB) problem. The structure depends on the value of
the final time, thus we finish showing how to detect this change of structure using the homotopy
method. Finally, section 5 gives the instructions to install the HamPath code.

Keywords. Geometric optimal control; Simple and multiple shooting methods; Homotopy (or
differential path following); Second order conditions of optimality (conjugate points); Goddard
problem (Bang-Bang and Bang-Singular-Bang solutions).

2 HamPath overview

2.1 Presentation of the overall strategic and algorithmic approach

Let consider a simple optimal control problem with q :“ px, vq the state and with λ a parameter:

(Pλ)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Jpup¨qq “
1

2

ż 1

0
uptq2 dt ÝÑ min

9xptq “ vptq,

9vptq “ ´λvptq2 ` uptq, uptq P R, t P r0 , 1s a.e.,

xp0q “ ´1, xp1q “ 0,
vp0q “ 0, vp1q “ 0,

where the initial and final times are fixed (t0 “ 0 and tf “ 1) and the boundaries are fixed to
q0 :“ qp0q “ p´1, 0q and qf :“ qp1q “ p0, 0q. Define the pseudo-Hamiltonian depending on λ:

Hλ : Rn ˆ Rn ˆ R ÝÑ R

pq, p, uq ÞÝÑ Hλpq, p, uq :“ pxv ` pvp´λv
2 ` uq `

1

2
p0u2,

4

with n “ 2 the state dimension, p :“ ppx, pvq and p0 “ ´1, assuming we are in the normal
case. The application of the Pontryagin Maximum Principle (PMP) tells us that the minimiz-
ing trajectories qp¨q are the projection of absolutely continuous extremals zp¨q :“ pqp¨q, pp¨qq,
zp¨q : t ÞÑ zptq P R2n, satisfying a.e.

9zptq “
ÝÑ
hλpzptqq (1)

with

Definition 2.1 (Maximized Hamiltonian).

hλpzq :“ Hλpz, ūpzqq “ pxv ` pvp´λv
2 ` ūpzqq ´

1

2
ū2pzq, (2)

the maximized (or true) and smooth Hamiltonian, where the optimal control is

ūpzq “ pv “ arg maxuPRHλpz, uq

and where the Hamiltonian system is given by

ÝÑ
hλpzq “

ˆ

Bhλ
Bp
pzq,´

Bhλ
Bq
pzq

˙

.

Definition 2.2 (Exponential mapping). For fixed z̄0 P R2n and t̄ ě 0, we define in a neigh-
borhood of pt̄ , z̄0q (if possible), the following exponential mapping pt, z0q ÞÑ exppt

ÝÑ
hλqpz0q as the

trajectory zp¨q at time t satisfying (1) for every s P r0 , ts, with zp0q “ z0.

Back to problem (OCP), the minimizing curves qp¨q must satisfy the boundary conditions.
As a consequence, they are the projection of what we call BC-extremals, i.e. extremals which
satisfy the boundary conditions, and we can define the following shooting function:

Definition 2.3 (Shooting function).

Sλ : Rn ÝÑ Rn

y ÞÝÑ Sλpyq :“ Πqpexppptf ´ t0q
ÝÑ
hλqpq0, yqq ´ qf ,

(3)

where Πq is the canonical q-projection, i.e. Πqpzq “ q.

The simple shooting method consists in finding a zero of the simple shooting function Sλ,
i.e. in solving Sλpyq “ 0. This is done by Newton type methods. A zero of the simple shooting
function satisfies the necessary conditions of optimality given by the PMP.

Remark 2.4. Sλ depends on λ, and we write Spy, λq :“ Sλpyq the homotopic function (instead
of shooting function) when we consider the parameter λ as an independent variable. With
HamPath, it is possible to solve Spy, λq “ 0 for λ P r0 , 1s for instance, using differential path
following methods. In this case, we say that λ is a homotopic parameter.

If we note qpt, q0, p0q :“ Πqpexppt
ÝÑ
hλqpq0, p0qq, then the trajectory qp¨, q0, p0q ceases to be

optimal after the time tc if p0 is a critical point of the mapping qptc, q0, ¨q. In this case, we
name tc a conjugate time and qptc, q0, p0q the associated conjugate point. Let give the following
definition.

5

Definition 2.5 (Jacobi field). Let
ÝÑ
h be a Hamiltonian system, and let zp¨q be a trajectory of

ÝÑ
h defined on r0 , tf s. The differential equation on r0 , tf s

9
Ňδzptq “ d

ÝÑ
h pzptqq ¨ δzptq (4)

is called a Jacobi equation, or variational system, along zp¨q. Let δzp¨q be a solution of (4), then
we name δzp¨q a Jacobi field and we write δzptq “: exppt d

ÝÑ
h |zp¨qqpδzp0qq.

As a conclusion, it comes that if tc is a conjugate time then

Bq

Bp0
ptc, q0, p0q “ Πq ˝ expptc d

ÝÑ
hλ|zp¨,q0,p0qqpδz0q, δz0 “

„

0n
In



,

is not of full rank n.

Summary of HamPath possibilities. The idea of HamPath is to produce a collection of nu-
merical functions in order to solve problems of the form (OCP). The user must only implement
the maximized Hamiltonian, see 2.1, and the shooting function, see 2.3. The different numerical
functions can be used to:

• compute the solutions of the exponential mapping, see definition 2.2;

• solve the shooting equations, see definition 2.3;

• compute the set of zeros of a homotopic function given by a family of shooting equations
depending on parameters, see remark 2.4;

• compute the Jacobi fields, see definition 2.5, and check if there exists any conjugate points.

Details on differential path following (or homotopy) methods. The homotopy method
is used to solve a one-parameter family of optimal control problems. This approach is well known
and widely used: see for example [2] for theoretical and numerical details. Here, we present
some general facts related to homotopy and then we summarize how HamPath implements the
differential path following method.

Suppose we want to solve the nonlinear equations F pyq “ 0, F : RN Ñ RN sufficiently
smooth. If we know a good approximation of a zero point of F then it is advisable to calculate
the zero point via a Newton-type algorithm. If it is not the case and no convergence is obtained,
to remedy to this problem one can define a homotopy function Φ: RN ˆ R Ñ R such that
Φpy, 0q “ Gpyq and Φpy, 1q “ F pyq where G : RN Ñ RN is a smooth mapping having known
zeros. For example we can choose a convex homotopy Φpy, λq :“ λF pyq ` p1 ´ λqGpyq and
try to trace an implicitely defined curve contained in Φ´1p0q from a starting point py0, 0q to
a solution point py1, 1q. Another possible deformation is the global homotopy (related to the
concept of global Newton method): Φpy, λq “ F pyq ´ p1´λqF py0q. Another possibility making
the homotopic method interesting is when the problem to solve has some parameters. Then the
deformation of the solutions with respect to these parameters can be studied.

The classical difficulties about homotopic methods consist in assuring that a curve in Φ´1p0q
exists, is sufficiently smooth and will intersect the target homotopic level λ “ 1 in a finite length.

6

Suppose first that Φ is continuously differentiable and that we know y0 such as Φpy0, 0q “ 0.
To ensure that a curve exists, we suppose:

rank

ˆ

BΦ

By
py0, 0q

˙

“ N

and we suppose that 0 is a regular value of Φ, i.e. for every r :“ py, λq P Φ´1p0q, r is a regular
point:

rank
`

Φ1prq
˘

“ N.

We do not discuss about bifurcation points or others singularities. In the regular case, a con-
tinuously differentiable curve starting from r0 :“ py0, 0q exists and is either diffeomorphic to a
circle or the real line. The only possibilities that prevent to intersect the final target λ “ 1
is that the curve returns back to the level λ “ 0, goes to infinity (i.e. |y| Ñ 8), or hits the
boundary of the domain of Φ if any boundaries exist. Sufficient conditions which ensure that
the curve will connect the target level λ “ 1 can be linked with topological degree theory.
See also Smale theorem from [2] which gives some sufficient boundary conditions for the global
homotopy. Note that in the regular case, the curves in Φ´1p0q are disjoints and we call each
branch of Φ´1p0q a path of zeros.

HamPath code. Since 0 is a regular value of Φ, then for any r P Φ´1p0q, dim ker Φ1prq “ 1 and
one can define the (tangent) vector T prq as being the unique –up to orientation– unit vector in
the kernel. The orientation is chosen so that the nonvanishing determinant

det

„

Φ1prq
T prqT



(5)

has constant sign on each connected component of Φ´1p0q which are then parameterized by arc
length and are computed integrating the following differential equation (with 1 “ d{ds):

r1psq “ T prpsqq, rp0q “ r0 P Φ´1p0q,

with r0 :“ py0, 0q obtained by a first shooting. The path of zeros is computed by integrating
the differential system with a high order Runge-Kutta scheme with step size control, combined
with few steps of a Newton’s method as corrector, see figure 1. See [2] for more details on
prediction-correction methods.

y

λ

‚
py0, 0q

‚
pyf , 1q

Φ “ 0

P

‚

C
T prpsqq

‚rpsq

Figure 1: Predictor-Corrector (PC) method. Here the prediction is better than Euler step.

7

2.2 Features

2.2.1 Schematic view of HamPath

On figure 2, you can see the links between the different user’s inputs and the outputs produced
by HamPath. These inputs and outputs are detailed in the following subsection 2.2.2. The top
part of the schema represents a piece of the user’s input, which have to be coded in Fortran
90. The part of this picture between the doted lines is the core of HamPath that the user can’t
access. The libraries used by HamPath in its core are detailed in the thirdparty part (see 2.2.3).
The part below the doted lines is a fragment of the outputs of HamPath which is in the language
chosen during the installation: it may be chosen among Fortran, Python, Matlab (only)
or both Matlab and Octave.

Spy, λq hλpzq

BS
By py, λq

BS
Bλ py, λq

T prpsqq

hampath

Fortran

ssolve

Fortran

ÝÑ
hλpzq

d
ÝÑ
hλpzq

exphvfun

Fortran

expdhvfun

Fortran

ssolve

Interface

hampath

Interface

exphvfun

Interface

expdhvfun

Interface

AD AD AD

AD

RK

RK

Newton

RK + Newton

QR

Fortran routines

Fortran core

Interface routines

Figure 2: Global diagram of HamPath code. AD stands for Automatic Differentiation, RK for
Runge-Kutta integrators used to solve ordinary differential equations, Newton for Newton-type
methods to solve non-linear equations and QR for QR factorization.

2.2.2 Interface

The user has first to implement some Fortran 90 subroutines. There are five possible entries,
at least one out of the first two is required for HamPath to work:

• sfun.f90 contains the sfun subroutine wich codes the shooting function Sλpyq or equiv-
alently the homotopic function Spy, λq “ Sλpyq.

8

• hfun.f90 contains the hfun subroutine which codes the maximized Hamiltonian hλpzq.

• afun.f90 groups together a set of auxiliary subroutines that can be called from sfun

and hfun. For instance the control is classicaly implemented there;

• mfun.f90 may be used to do monitoring along the differential path following. For in-
stance, see section 4.3.3, it can be used to detect structural changes of the solutions during
the homotopy;

• pfun.f90: the problem (OCP) may depend on a vector parameter Λ P Rk, k ě 1. A
homotopy on several parameters (from Λ0 to Λf for instance) can be computed using a
scalar reparameterization. This can be done by adding a scalar parameter λ such as Λ “ Λ0

when λ “ 0 and Λ “ Λf when λ “ 1. The affine homotopic function Λpλq “ p1´λqΛ0`λΛf
is a simple example of such a parameterization. This is the default behavior of HamPath

code when the user ask to perform a homotopy on several parameters, unless the user
implements its own function Λpλq into the file pfun.f90.

The outputs of HamPath are (see paragraph “Manuals of HamPath functions” from section
2.2.4 for help):

• hfun, hvfun, dhvfun: these functions are created from a hfun.f90 file and implement
respectively the maximized Hamiltonian hλ, the Hamiltonian system

ÝÑ
hλ and its differential

d
ÝÑ
hλ;

• exphvfun, expdhvfun: these functions really flow from the previous ones and may be
used to compute the solutions of 9zptq “

ÝÑ
h λpzptqq (see the definition of the exponential

mapping 2.2), or the solutions of 9
Ňδzptq “ d

ÝÑ
hλpzptqq ¨ δzptq (see the definition of a Jacobi

field 2.5);

• sfun, sjac: the first function makes just a call to the Fortran subroutine sfun imple-
mented by the user in the file sfun.f90, while the function sjac computes the Jacobian
of the shooting function.

• ssolve, hampath: these are really important outputs. The function ssolve solves the
shooting equations by shooting methods, while the command hampath may be used to
solve a family of optimal control problems, computing a path of zeros of the associated
homotopic function.

• hampathOptions: this is the class used to manipulate the options of the previous functions,
only under the Python interface;

• hampathset, hampathget: these files group together the methods to set and get options
of the previous functions, only with the Matlab and/or Octave interface;

• each subroutine of afun.f90 whose signature is identical to hfun in hfun.f90 will
have automatically an implementation in the interface.

9

2.2.3 Core of HamPath and thirdparty

The Fortran hybrid Newton method hybrj (from the minpack library [21]) is used to solve the
nonlinear system Sλpyq “ 0. Providing hλ and Sλ to HamPath, the code generates automatically
the Jacobian of the shooting function which is given to the solver. To make the implementation
of Sλ easier, HamPath supplies the exponential mapping. Automatic Differentiation (tapenade
software [17]) is used to produce

ÝÑ
hλ and is combined with Runge-Kutta integrators, see [15, 16],

to assemble the exponential mapping. Here is the list of the available Runge-Kutta methods:

• explicit with fixed step: Euler Explicite, Runge, Heun, rk4 (5);

• explicit with step size control: Dopri5 (default), Dop853;

• implicit with fixed step: Euler, MidPoint, Gauss4 (6, 8), Radau IA1 (3, 5), Radau IIA1

(3, 5), RadauS, Lobatto4 (6), LobattoIIIA2 (4, 6), LobattoIIIB2 (4, 6), LobattoIIIC2
(4, 6), SDIRK3, SDIRK4L, SDIRK4A, DIRK5;

• implicit with step size control: Radau5 (9, 13) and a Radau with adaptative order.

Besides, to compute the tangent vector T prpsqq along the path of zeros, HamPath calls lapack
library [3] for QR factorization, and actually every matrix-matrix or matrix-vector operations
is performed by blas [12, 13] subroutines.

2.2.4 Additional information on HamPath code: get examples, helps and options.

Get examples. You can copy the files describing the simple shooting problem into your
current directory by typing in your terminal:

• hampath -example simple shooting.

You can check the list of the available examples by typing:

• hampath -example.

Helps. There are manuals for every function of HamPath, you can access them by typing:

• hampath -help function in your terminal.

• help function in Matlab for your Matlab/Octave Interface.

• help(function) in the Python interpreter.

Options. There are options for many functions of HamPath, you can get details by typing:

• hampath -help options in your terminal.

• help hampathset in Matlab or Octave under the Matlab/Octave Interface.

• help(HampathOptions) in the Python interpreter.

10

Outputs of hampath function. The hampath command is quite verbose. After the compila-
tion, when the interface is loaded, you can get something like this:� �

Homotopic param. Arclength s det(s) |S(y)| Inner product ...

-0.15793129590E-16 0.00000000E+00 -0.83336587E-01 0.31577991E-14 0.00000000E+00 ...

0.58238810394E-06 0.58239015E-06 -0.83333344E-01 0.69388939E-14 0.99996531E+00 ...

0.94887097171E-06 0.94887309E-06 -0.83333347E-01 0.12880501E-13 0.10000000E+01 ...

0.24319249308E-05 0.24319271E-05 -0.83333340E-01 0.86870303E-14 0.99999998E+00 ...

0.44863073286E-05 0.44863095E-05 -0.83333335E-01 0.24588761E-14 0.99999999E+00 ...

0.11416414981E-04 0.11416417E-04 -0.83333336E-01 0.85602443E-14 0.10000000E+01 ...

0.30991940957E-04 0.30991943E-04 -0.83333337E-01 0.58894820E-15 0.10000000E+01 ...

0.91219417098E-04 0.91219428E-04 -0.83333359E-01 0.28527632E-15 0.99999989E+00 ...

0.21626296893E-03 0.21626309E-03 -0.83333471E-01 0.17737528E-14 0.99999948E+00 ...

0.61298250969E-03 0.61298515E-03 -0.83334428E-01 0.45459024E-15 0.99999461E+00 ...

...

0.52007251880E+00 0.12689392E+01 -0.41334984E+00 0.32922624E-15 0.99981773E+00 ...

0.56415947311E+00 0.14669763E+01 -0.45550566E+00 0.12570776E-14 0.99985895E+00 ...

0.60972561305E+00 0.16868735E+01 -0.50157364E+00 0.51763654E-14 0.99988966E+00 ...

0.65678541917E+00 0.19300563E+01 -0.55207738E+00 0.81052455E-15 0.99991286E+00 ...

0.70534162343E+00 0.21979006E+01 -0.60761829E+00 0.54793088E-14 0.99993060E+00 ...

0.75538497947E+00 0.24917071E+01 -0.66888567E+00 0.71239377E-15 0.99994431E+00 ...

0.80689378431E+00 0.28126725E+01 -0.73666771E+00 0.24432825E-14 0.99995502E+00 ...

0.85983368675E+00 0.31618618E+01 -0.81186362E+00 0.29758909E-15 0.99996345E+00 ...

0.91415922277E+00 0.35401921E+01 -0.89549939E+00 0.20051516E-14 0.99997013E+00 ...

0.96981434231E+00 0.39484123E+01 -0.98874381E+00 0.34271409E-14 0.99997545E+00 ...

0.99999999660E+00 0.41784127E+01 -0.10428214E+01 0.74373845E-14 0.99999398E+00 ...

Results of the homotopy:

Homotopy successfully completed !

steps = 44

flag = 1

sf = 0.417841271645901E+01

lambdaf = 0.999999996602098E+00

|S(y_final)| = 0.743738448589125E-14

y_final = [0.159471278099168E+02 0.648065830023709E+01]’

par_final = [0.000000000000000E+00 ... 0.999999996602098E+00]’� �
There is a chart of values and some columns that have to be detailed:

• Arclength s: it is the arclength of the path of zeros at each iteration of the algorithm.

• det(s): it is the value of the following determinant (cf. eq. (5)) at each iteration of the
algorithm

det

„

S1prpsqq
r1psqT



,

with r :“ py, λq.

• Inner product: it is the scalar product of two consecutive tangent vectors (cf. defini-
tion 2.1) at each iteration of the algorithm, this product should be close to 1.

11

3 Simple examples

3.1 A simple shooting problem

Let consider the following optimal control problem which will be solved by simple shooting:

(Pλ)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Jpup¨qq “
1

2

ż tf

t0

uptq2 dt ÝÑ min

9xptq “ vptq,

9vptq “ ´λvptq2 ` uptq, uptq P R, t P rt0 , tf s a.e.,

xpt0q “ x0, xptf q “ xf ,
vpt0q “ v0, vptf q “ vf ,

with t0 “ 0, tf “ 1, q0 :“ px0, v0q “ p´1, 0q and qf :“ pxf , vf q “ p0, 0q. We define the following
vector of parameters:

Λpλq :“ pt0, tf , x0, v0, xf , vf , λq. (6)

The vector Λpλq is the par vector in the headers of the Fortran routines and in the main file.

Main goals. For this simple problem we want to

• solve Pλ for λ P r0 , 1s;

• check the optimality of the solution for λ “ 1;

• display the path of zeros for λ P r0 , 1s and the solution for λ “ 1.

We present now the files the user has to implement to solve this problem. You can copy the
files into your current directory, see paragraph “Get examples” from section 2.2.4.

3.1.1 User implementation of hfun Fortran routines.

Remark 3.1. See section 3.2.1 to get an idea of the role of iarc variable!

The PMP gives us the optimal control (cf. definition 2.1 and listing 1) ūpzq :“ pv and we
can define the maximized Hamiltonian (cf. definition 2.1 and listing 2)

hλpzq :“ pxv ` pvp´λv
2 ` ūpzqq `

1

2
p0 ū2pzq, p0 “ ´1 (normal case).� �

Subrout ine c o n t r o l (t , n , z , i a r c , npar , par , u)
i m p l i c i t none
in t ege r , i n t e n t (in) : : n , npar , i a r c
double p r e c i s i o n , i n t e n t (in) : : t
double p r e c i s i o n , dimension (2 ∗n) , i n t e n t (in) : : z
double p r e c i s i o n , dimension (npar) , i n t e n t (in) : : par
double p r e c i s i o n , i n t e n t (out) : : u

u = z (n+2) ! u = pv

end subrout ine c o n t r o l� �
Listing 1: afun.f90

12

� �
Subrout ine hfun (t , n , z , i a r c , npar , par , h)

i m p l i c i t none
in t ege r , i n t e n t (in) : : n , npar , i a r c
double p r e c i s i o n , i n t e n t (in) : : t
double p r e c i s i o n , dimension (2 ∗n) , i n t e n t (in) : : z
double p r e c i s i o n , dimension (npar) , i n t e n t (in) : : par
double p r e c i s i o n , i n t e n t (out) : : h

! Local d e c l a r a t i o n s
double p r e c i s i o n : : x , v , px , pv , lambda , u

lambda = par (7)
x = z (1) ; v = z (2)
px = z (n+1) ; pv = z (n+2)

c a l l c o n t r o l (t , n , z , i a r c , npar , par , u)

h = px∗v + pv∗(´lambda∗v∗∗2 + u) ´ 0 .5 d0∗u∗∗2

end subrout ine hfun� �
Listing 2: hfun.f90

3.1.2 User implementation of sfun Fortran routines.

Then, we define the Shooting function (cf. definition 2.3 and listing 3)

Sλ : R2 ÝÑ R2

y ÞÝÑ Sλpyq :“ Πqpexppptf ´ t0q
ÝÑ
hλqpq0, yqq ´ qf� �

Subrout ine s fun (ny , y , npar , par , s)
use mod exphv4sfun
i m p l i c i t none
in t ege r , i n t e n t (in) : : ny
in t ege r , i n t e n t (in) : : npar
double p r e c i s i o n , dimension (ny) , i n t e n t (in) : : y
double p r e c i s i o n , dimension (npar) , i n t e n t (in) : : par
double p r e c i s i o n , dimension (ny) , i n t e n t (out) : : s

! l o c a l v a r i a b l e s
double p r e c i s i o n : : z0 (4) , z f (4) , tspan (2)
i n t e g e r : : n , i a r c

n = 2 ! Dimension o f the s t a t e

tspan (1) = par (1) ! t0
tspan (2) = par (2) ! t f

z0 (1) = par (3) ! x0
z0 (2) = par (4) ! v0
z0 (n+1) = y (1) ! px0

13

z0 (n+2) = y (2) ! pv0

i a r c = 1 ! There i s only one arc :
! compare with Bang´Bang case

c a l l exphv (tspan , n , z0 , i a r c , npar , par , z f)

s (1) = z f (1) ´ par (5) ! x (t f) ´ xf
s (2) = z f (2) ´ par (6) ! v (t f) ´ vf

end subrout ine s fun� �
Listing 3: Shooting function in sfun.f90

3.1.3 User implementation of the main file.

We present the most important parts of the main file main.m (callable from the Matlab
Interface). See paragraph “Get examples” from section 2.2.4 to get the complete file.

1. We first use the ssolve command to find a y0 such as Sλpy0q “ 0 with λ “ 0:� �
[y0 , s s o l , nfev , njev , f l a g] = s s o l v e (yGuess , opt ions , par0) ;� �
where

• yGuess is a wisely chosen initial guess.

• options are the default options (cf. the options paragraph section 2.2.4).

• par0 is the vector of parameters Λp0q, i.e. with λ “ 0 (cf. eq. (6)).

2. Then we compute the path of zeros of Spy, λq “ 0 for λ P r0 , 1s (we consider here λ as a
homotopic variable of S and not as a parameter) with the hampath command:� �
[parout , yout , ˜ , ˜ , ˜ , ˜ , ˜ , f l a g] = hampath (parspan , y0 , opt ions) ;� �
where

• parspan is the couple of vector of parameters pΛ0,Λf q with Λ0 “ Λp0q and Λf “ Λp1q.

• y0 is the solution at Λ0.

• options are still the default options.

That gives us:

3. We get p0f the solution at Λf and compute the extremal zp¨q and the control up¨q at Λf
with the exphvfun and control commands (see figures 4 and 5):� �
p0f = yout (: , end) ;
[tout , z , f l a g] = exphvfun ([t0 t f] , [q0 ; p0f] , opt ions , par f) ;
u = c o n t r o l (tout , z , par f) ;� �

14

p
x
(0)

12 13 14 15 16

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
v
(0)

6 6.1 6.2 6.3 6.4 6.5

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: path of zeros for λ P r0 , 1s

t
0 0.2 0.4 0.6 0.8 1

u
(t

)

-8

-6

-4

-2

0

2

4

6

8

Figure 4: Optimal control at Λf .

4. At Λf , we compute the Jacobi fields δzp¨q along zp¨q (cf. definition 2.5) for t P rt0 , tf s

with zpt0q “ pq0, p0,f q and δz0 :“ δzpt0q “

„

0n
In



:� �
z0 = [q0 ; p0f] ; dz0 = [z e ro s (n) ; eye (n)] ;
[tout , z , dz , f l a g] = expdhvfun ([t0 t f] , z0 , dz0 , opt ions , par f) ;� �
And check the optimality of the solution by looking at:

• the determinant of Πq ˝ expppt ´ t0q d
ÝÑ
hλ|zp¨qqpδz0q for λ “ 1 which must be of a

constant sign for t P rt0 , tf s.

• the smallest singular value which must not vanish.� �
sv = [] ; de = [] ;
f o r j = 1 : l ength (tout)

dq = dz (1 : n ,1+(j´1)∗k : j ∗k) ;
sv (j) = min (svd (dq)) ; % Get s m a l l e s t s i n g u l a r va lue
de (j) = det (dq) ; % Get determinant

end ;� �
15

t0 0.2 0.4 0.6 0.8 1

x
(t

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

t0 0.2 0.4 0.6 0.8 1

p
x
(t

)

14.5

15

15.5

16

16.5

17

t0 0.2 0.4 0.6 0.8 1

v
(t

)

0

0.5

1

1.5

t0 0.2 0.4 0.6 0.8 1

p
v
(t

)

-8

-6

-4

-2

0

2

4

6

8

Figure 5: State and co-state solution at Λf .

This gives

t0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

σmin

sign(det(δq))

Figure 6: Conjugate points at Λf .

16

3.2 A multiple shooting problem

Let’s look at another problem Pλ:

(Pλ)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Jptf , up¨qq “ tf ÝÑ min

9xptq “ vptq,

9vptq “ ´λvptq2 ` uptq, uptq P r´1 , 1s, t P rt0 , tf s a.e.,

xpt0q “ x0, xptf q “ xf ,
vpt0q “ v0, vptf q “ vf ,

with t0 “ 0, q0 :“ px0, v0q “ p´1, 0q and qf :“ pxf , vf q “ p0, 0q. We define the following vector
of parameters:

Λpλq :“ pt0, x0, v0, xf , vf , λq. (7)

The vector Λpλq is the par vector in the headers of the Fortran routines and in the main file.

Main goal. For this problem we want to

• solve Pλ for λ P r0 , 1s;

• compute and display the path of zeros for λ P r0 , 1s and the solution for λ “ 1.

We present now some parts of the files the user has to implement to solve this problem. You
can copy the files into your current directory, see paragraph “Get examples” from section 2.2.4.

3.2.1 User implementation of hfun Fortran routines

The pseudo-Hamiltonian of this problem is:

Hλpq, p, uq “ pxv ` pvp´λv
2 ` uq,

with q :“ px, vq and p :“ ppx, pvq. The optimal control is given by:

ūpzq “

$

&

%

`1 if pv ą 0
uspzq if pv “ 0
´1 if pv ă 0

with z :“ pq, pq and where uspzq P r´1 , 1s is the singular control. So, it is giving us this set of
Hamiltonians:

hλpzq “

$

&

%

h`pzq :“Hλpz,`1q when pv ą 0
hspzq :“Hλpz, uspzqq when pv “ 0
h´pzq :“Hλpz,´1q when pv ă 0

.

The PMP gives us the structure of the solution: Bang-Bang with two arcs associated to
h` then h´. The role of the iarc variable, in control and hfun subroutines, is to choose the
control that fit to the current arc of study, it is the index of the arc.� �

i f (i a r c . eq . 1) then
u = 1d0

e l s e ! i a r c = 2
u = ´1d0

end i f� �
control in afun.f90

17

� �
lambda = par (6)
x = z (1) ; v = z (2)
px = z (n+1) ; pv = z (n+2)

c a l l c o n t r o l (t , n , z , i a r c , npar , par , u)

h = px ∗ v + pv ∗ (´lambda∗v∗∗2 + u)� �
Hamiltonian in hfun.f90

3.2.2 User implementation of sfun Fortran routines.

The shooting function is a bit more tricky than the previous one, because we have 8 unknown
variables: the initial adjoint vector, the final time tf , the switching time t1 and the state and
co-state z1 at t1. The shooting function becomes

Sλ : R8 ÝÑ R8

y :“

»

—

—

—

—

–

t1
tf
px,0
pv,0
z1

fi

ffi

ffi

ffi

ffi

fl

ÞÝÑ Sλpyq :“

»

—

—

—

—

–

xptf q ´ xf
vptf q ´ vf
z1 ´ zpt1q
pvpt1q

h´pzptf qq ´ 1

fi

ffi

ffi

ffi

ffi

fl

with
zpt1q :“ expppt1 ´ t0q

ÝÑ
h`qpz0q, zptf q :“ exppptf ´ t1q

ÝÑ
h´qpz1q

and z0 :“ px0, v0, px,0, pv,0q.� �
n = 2
t0 = par (1) ; t1 = y (1) ; t f = y (2)
z0 (1) = par (2) ; z0 (2) = par (3) ! x0 , v0
z0 (n+1) = y (3) ; z0 (n+2) = y (4) ! px0 , pv0
z1 = y (5 : 8)

! I n t e g r a t i o n on the f i r s t arc : u = +1
i a r c = 1 ; tspan = (/ t0 , t1 /)
c a l l exphv (tspan , n , z0 , i a r c , npar , par , expz0)

! I n t e g r a t i o n on the second arc : u = ´1
i a r c = 2 ; tspan = (/ t1 , t f /)
c a l l exphv (tspan , n , z1 , i a r c , npar , par , expz1)

c a l l hfun (t f , n , expz1 , i a r c , npar , par , hf)

s (1) = expz1 (1) ´ par (4) ! F ina l cond i t i on on xf
s (2) = expz1 (2) ´ par (5) ! F ina l cond i t i on on vf
s (3 : 6) = z1 ´ expz0 ! Matching cond i t i on z1 = z (t1)
s (7) = expz0 (n+2) ! Switching cond i t i on pv (t1) = 0
s (8) = hf ´ 1d0 ! F ina l Hamiltonian cond i t i on� �

Shooting function in sfun.f90

18

3.2.3 User implementation of the main file

We present the most important parts of the main file main.m (callable from the Matlab
Interface). See paragraph “Get examples” from section 2.2.4 to get the complete file.

1. We first use the ssolve command to find a y0 such as Sλpy0q “ 0 with λ “ 0:� �
[y0 , s s o l , nfev , njev , f l a g] = s s o l v e (yGuess , opt ions , par0) ;� �
where

• yGuess is a wisely chosen initial guess.

• options are the default options (cf. the options paragraph section 2.2.4).

• par0 is the vector of parameters Λp0q, i.e. with λ “ 0 (cf. eq. (7)).

2. Then we compute the path of zeros of Spy, λq “ 0 for λ P r0 , 1s with the hampath

command, see figure 2:� �
[parout , yout , ˜ , ˜ , ˜ , ˜ , ˜ , f l a g] = hampath (parspan , y0 , opt ions) ;� �
where

• parspan is the couple of vector of parameters pΛ0,Λf q with Λ0 “ Λp0q and Λf “ Λp1q.

• y0 is the solution at Λ0.

• options are still the default options.

p
x
(0)1 1.05 1.1 1.15 1.2

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
v
(0)0.9 0.95 1 1.05 1.1

λ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Path of zeros

3. We want to display the solution for λ “ 1. To do so, we get p0f the co-vector at Λf and
compute the extremal zp¨q and the control up¨q at Λf with the exphvfun and control

commands (see figures 8 and 9):� �
p0f = yout (3 : 4 , end) ;
t i = [t0 t1 t f] ; % t i i s r equ i r ed s i n c e the re are two arc s !
[tout , z , f l a g] = exphvfun ([t0 t f] , [q0 ; p0f] , t i , opt ions , par f) ;
u = c o n t r o l (tout , z , t i , pa r f) ;� �

19

t0 0.5 1 1.5 2 2.5

x
(t

)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

t0 0.5 1 1.5 2 2.5

p
x
(t

)

0

0.5

1

1.5

2

2.5

t0 0.5 1 1.5 2 2.5

v
(t

)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

0 0.5 1 1.5 2 2.5

p
v
(t

)

-1.5

-1

-0.5

0

0.5

1

Figure 8: State and co-state solution at Λf .

t0 0.5 1 1.5 2 2.5

u
(t

)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 9: Optimal control at Λf .

20

4 Goddard problem

We will now focus on a one hundred years old problem: the Goddard Problem. This prob-
lem has already been treated many times (see [14], [20] and [22]), wether theoretically and
numerically. Here, we are going to focus on some particular cases of this problem.

The goal is to maximize the final altitude of a rocket which is flying verticaly (a one-
dimension flight) with a fixed final time. Here are the equations of the problem:

(Ptf)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

maxhptf q

9hptq “ vptq,

9vptq “
1

mptq
pc uptq ´Dpvptq, hptqqq ´ g0,

9mptq “ ´uptq,

0 ďuptq ď umax,

hpt0q “ h0, vpt0q “ v0, mpt0q “ m0,

mptf q “ mf ,

with t0 “ 0, q0 :“ ph0, v0,m0q “ p0, 0,m0q, and where hptq is the altitude at the time t, vptq
the speed, mptq the mass of the rocket, Dph, vq the drag, g0 the constant of gravity, c the fixed
specific impulse and uptq the control or thrust. The optimal structure depends on the value of
the fixed final time tf . We define a new vector of parameters:

Λptf q :“ ptf , α, β, g0, umax, c, t0, h0, v0,m0,mf q (8)

The pseudo-Hamiltonian of this system is

Hpq, p, uq “ phv ` pv

ˆ

c u´Dph, vq

m
´ g0

˙

´ pmu “ H0pq, pq ` uH1pq, pq

with H0pq, pq :“ phv´pvp
Dph,vq
m ´ g0q and H1pq, pq :“

pv c

m
´pm. The control law is defined by:

ūpzq “

$

’

&

’

%

umax if H1pzq ą 0

uspzq if H1pzq “ 0

0 if H1pzq ă 0

(9)

So, it is giving us this set of Hamiltonians:

hpzq “

$

&

%

h`pzq :“H0pzq ` umaxH1pzq when H1pzq ą 0
hspzq :“H0pzq ` uspzqH1pzq when H1pzq “ 0
h0pzq :“H0pzq when H1pzq ă 0

. (10)

with z :“ pq, pq and us the singular control. Let compute the singular control. Let assume
H1pzptqq “ 0 for all t P I, I Ă r0 , tf s an interval with non empty interior. Then for all t P I we
have:

d

dt
pH1 ˝ zqptq “ tH,H1u pzptqq “ tH0, H1u pzptqq “: H01pzptqq “ 0

where tH0, H1u is the Poisson bracket between H0 and H1. Differentiating twice, we obtain:

d

dt
pH01 ˝ zqptq “ tH,H01u pzptqq “ H001pzptqq ` uptqH101pzptqq “ 0

21

Then, if H101pzq ‰ 0 we have:

uspzq “ ´
H001pzq

H101pzq
“
D

c
`m

pc´ vqDh ` g Dv ` c g Dvv ´ c v Dvh

D ` 2 cDv ` c2Dvv
(11)

with D :“ Dph, vq, Dh :“ BD
Bh ph, vq, Dv :“ BD

Bv ph, vq, Dvh :“ B2D
BvBhph, vq and Dvv :“ B2D

Bv2
ph, vq.

We are now going to treat a few different solutions of this problem depending on the fixed
chosen final time tf .

4.1 A Bang-Bang solution: tf “ 20.

We know (see [20]) that for tf “ 20, the structure of the solution is Bang-Bang with two arcs,
first up¨q ” umax and then up¨q ” 0.

Main goal.

• Solve (Ptf) for tf “ 20.

• Show the state and co-state solution, the optimal control and the graph of t ÞÑ H1pzptqq.

4.1.1 User implementation of hfun Fortran routine

Before coding the maximized Hamiltonian in the hfun.f90 file, we detail two useful auxiliary
functions, geth1 and control, we implement in the afun.f90 file. geth1 will simply computes
H1pzq, see equation (10), and the control will code the control law defined in equation (9).

geth1 subroutine in afun.f90

This routine has the same head as the hfun subroutine which allows HamPath to create an
interfaced function of geth1!� �

m = z (3) ; pv = z(2+n) ; pm = z(3+n)
c = par (6)
H1 = pv∗c/ḿ pm� �

Listing 4: H1 in afun.f90

The same way, we implemented a geth0 subroutine in afun.f90 to compute H0.

control subroutine in afun.f90

The PMP gives us the structure of the solution: Bang-Bang with two arcs associated to h`
and then h0. The role of the iarc variable is to choose the control that fit to the current arc of
study, it is the index of the arc. But, unlike in section 3.2, it is used in a more generic way: the
structure of the control is stocked in the par vector of parameters. In this case, we have:

par “ rΛptf q 1 0s (12)

where 1 means that the first arc is up¨q ” umax and 0 that the second arc is up¨q ” 0. So if we
note nparmin (“ 11) the dimension of Λ, then the nparmin + iarc parameter of the par vector
is the structure of the control on the current arc.

22

� �
umax = par (5)
l abe lArc = nint (par (nparmin+i a r c))
s e l e c t case (l abe lArc)

case (0) ! The second Bang arc i s u = 0
u = 0d0

case (1) ! The f i r s t Bang arc i s u = umax
u = umax

end s e l e c t� �
control in afun.f90

hfun subroutine in hfun.f90

We normalize the time by the simple change of variable t “ ptf ´ t0q s` t0, s P r0 , 1s, and the
Hamiltonian becomes:

Hpq, p, uq “ ptf ´ t0qpH0pq, pq ` uH1pq, pqq� �
t0 = par (7) ; t f = par (1)
c a l l geth0 (t , n , z , i a r c , npar , par , H0)
c a l l geth1 (t , n , z , i a r c , npar , par , H1)
c a l l c o n t r o l (t , n , z , i a r c , npar , par , u)
H = (t f´t0) ∗ (H0+u∗H1)� �

Listing 5: Hamiltonian in hfun.f90

4.1.2 User implementation of sfun Fortran routine

The shooting function is a bit more tricky than the previous one, because we have 10 unknown
variables: the initial adjoint vector, the final time tf , the switching time t1 and the state and
co-state z1 at t1. The shooting function becomes

Stf : R10 ÝÑ R10

y :“

»

—

—

—

—

–

ph,0
pv,0
pm,0
t1
z1

fi

ffi

ffi

ffi

ffi

fl

ÞÝÑ Stf pyq :“

»

—

—

—

—

–

zpt1q ´ z1
h1pz1q

phptf q ` p
0

pvptf q
mptf q ´mf

fi

ffi

ffi

ffi

ffi

fl

(13)

with

zpt1q :“ expp
t1 ´ t0
tf ´ t0

~h`qpz0q,

ph, v,m, ph, pv, pmqptf q :“ expp
tf ´ t1
tf ´ t0

~h0qpz1q

and p0 “ ´1, z0 :“ pq0, ph,0, pv,0, pm,0q.

23

� �
n = 3
p0 = y (1 : 3) ; t1 = y (4) ; z1 = y (5 : 1 0)
t f = par (1) ; t0 = par (7) ; q0 = par (8 : 1 0) ; mf = par (11)
z0 (1 : 3) = q0 ; z0 (4 : 6) = p0
t0norm = 0d0 ; t1norm = (t1´t0) /(t f´t0) ; tfnorm = 1d0

! I n t e g r a t i o n on the f i r s t arc
i a r c = 1 ; tspan = (/ t0norm , t1norm /)
c a l l exphv (tspan , n , z0 , i a r c , npar , par , expz0)
c a l l geth1 (t1norm , n , z1 , i a r c , npar , par , H1)

! I n t e g r a t i o n on the second arc
i a r c = 2 ; tspan = (/ t1norm , tfnorm /)
c a l l exphv (tspan , n , z1 , i a r c , npar , par , expz1)

s (1 : 6) = expz0 ´ z1 ! Matching cond i t i on
s (7) = H1 ! Switching cond i t i on
s (8) = expz1 (n+1) ´ 1d0 ! T r a n s v e r s a l i t y cond i t i on on ph
s (9) = expz1 (n+2) ! T r a n s v e r s a l i t y cond i t i on on pv
s (10) = expz1 (3) ´ mf ! Fina l cond i t i on on m(t f)� �

Shooting function in sfun.f90

4.1.3 User implementation of the main file

We present the most important parts of the main file main.m (callable from the Matlab
Interface). See paragraph “Get examples” from section 2.2.4 to get all the files.

1. We first use the ssolve command to find a y0 such as Stf py0q “ 0 with tf “ 20:� �
[y0 , s s o l , nfev , njev , f l a g] = s s o l v e (yGuess , opt ions , par) ;� �
where

• yGuess is a wisely chosen initial guess.

• options are the default options (cf. the options paragraph section 2.2.4).

• par is the vector of parameters of size nparmin + the number of arcs, see its initial-
ization:� �
par = [t f 0 .01227 0.000145 9 .81 9 .52551 2060 t0 q0 (1) q0 (2) q0 (3)

67.983310 1 0] ’ ; % t f alpha beta g0 umax c t0 q0 mf� �
2. To display the solution for tf “ 20, we compute the extremal zp¨q, the control up¨q and
H1pzp¨qq (see figure 10 and 11). We need the vector ti of initial, switching and final times.� �
t i = [t0norm t1norm tfnorm] ;
[tout , z , f l a g] = exphvfun ([t0norm tfnorm] , z0 , t i , opt ions , par) ;
u = c o n t r o l (tout , z , t i , par) ;
H1 = geth1 (tout , z , t i , par) ;� �

24

t0 0.2 0.4 0.6 0.8 1

h
(t

)

×10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

0 0.2 0.4 0.6 0.8 1

p
h
(t

)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

t

0.2 0.4 0.6 0.8 1

v
(t

)

0

200

400

600

800

1000

1200

1400

1600

t

0 0.2 0.4 0.6 0.8 1

p
v
(t

)

0

2

4

6

8

10

12

14

16

18

t

0 0.2 0.4 0.6 0.8 1

m
(t

)

60

80

100

120

140

160

180

200

220

t

0 0.2 0.4 0.6 0.8 1

p
m

(t
)

0

20

40

60

80

100

120

Figure 10: State (left) and co-state (right) solution

t

0 0.2 0.4 0.6 0.8 1

u
(t

)

0

1

2

3

4

5

6

7

8

9

10

t

0 0.2 0.4 0.6 0.8 1

h
1
(t

)

-150

-100

-50

0

50

100

150

200

Figure 11: Optimal control and H1pzp¨qq

25

4.2 A Bang-Singular-Bang solution: tf « 206.

We know (see [20]) that for a fixed final time tf « 206, the structure of the solution is Bang-
Singular-Bang with three arcs, first up¨q ” umax, then up¨q ” uspzp¨qq and finally up¨q ” 0. We
also have the same vector of parameters as before (cf. equation (8)).

Main goal.

• Solve (Ptf) for tf “ 206.661.

• Show the state and co-state solution, the optimal control, the graphs of t ÞÑ H1pzptqq and
t ÞÑ H01pzptqq.

4.2.1 User implementation of hfun Fortran routines.

Compare to the Bang-Bang case, we need now the singular control, see equation (9). The
maximized Hamiltonian, H1 and H0 are the same as in the Bang-Bang case (cf. section 4.1.1),
see listings 4 and 5.� �

ht = z (1) ; v = z (2) ; m = z (3)
ph = z (n+1) ; pv = z (n+2) ; pm = z (n+3)
t f = par (1) ; alpha = par (2) ; beta = par (3) ;
g0 = par (4) ; umax = par (5) ; c = par (6)

D = (alpha ∗v∗∗ 2) ∗exp(´beta ∗ht) ! Drag func t i on
Dh = (´beta ∗ alpha ∗v∗∗ 2) ∗exp(´beta ∗ht) ! d/dh (drag func t i on)
Dv = (2 ∗ alpha ∗v) ∗exp(´beta ∗ht) ! d/dv (drag func t i on)
Dvv = (2 ∗ alpha) ∗exp(´beta ∗ht) ! d2/dv2 (drag func t i on)
Dvh = (´beta ∗2∗ alpha ∗v) ∗exp(´beta ∗ht) ! d2/dhdv (drag func t i on)

l abe lArc = nint (par (nparmin+i a r c))
s e l e c t case (l abe lArc)

case (0) ! The t h i r d Bang arc i s u = 0
u = 0d0

case (1) ! The f i r s t Bang arc i s u = umax
u = umax

case (2) ! The second Bang arc i s u = us
u = D/c+m∗ ((c´v) ∗Dh+g0∗Dv+c∗g0∗Dvv́ c∗v∗Dvh) /(D+2∗c∗Dv+Dvv∗c∗∗ 2)

end s e l e c t� �
Listing 6: Control in afun.f90

26

4.2.2 User implementation of sfun Fortran routines.

The shooting function is:

Stf : R17 ÝÑ R17

y :“

»

—

—

—

—

—

—

—

—

–

ph,0
pv,0
pm,0
t1
z1
t2
z2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ÞÝÑ Stf pyq :“

»

—

—

—

—

—

—

—

—

–

zpt1q ´ z1
zpt2q ´ z2
h1pz1q
h01pz1q

phptf q ` p
0

pvptf q
mptf q ´mf

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(14)

with
zpt1q :“ expp

t1 ´ t0
tf ´ t0

~h`qpz0q, zpt2q :“ expp
t2 ´ t1
tf ´ t0

~hsqpz1q,

ph, v,m, ph, pv, pmqptf q :“ expp
tf ´ t2
tf ´ t0

~h0qpz2q

and p0 “ ´1, z0 :“ pq0, ph,0, pv,0, pm,0q. We see that we need a function that compute H01:� �
ht = z (1) ; v = z (2) ; m = z (3)
ph = z (n+1) ; pv = z (n+2) ; pm = z (n+3)
t f = par (1) ; alpha = par (2) ; beta = par (3)
g0 = par (4) ; umax = par (5) ; c = par (6)
D = (alpha ∗v∗∗ 2) ∗exp(´beta ∗ht)
Dv = (2 ∗ alpha ∗v) ∗exp(´beta ∗ht)
H01 = (1/m∗∗ 2) ∗ (pv∗ (D+c∗Dv)´ph∗c∗m)� �

H01 in afun.f90� �
i a r c = 1 ; tspan = (/ t0norm , t1norm /)
c a l l exphv (tspan , n , z0 , i a r c , npar , par , expz0)
c a l l geth1 (t1norm , n , z1 , i a r c , npar , par , H1)
c a l l geth01 (t1norm , n , z1 , i a r c , npar , par , H01)

! I n t e g r a t i o n on the second arc
i a r c = 2 ; tspan = (/ t1norm , t2norm /)
c a l l exphv (tspan , n , z1 , i a r c , npar , par , expz1)

! I n t e g r a t i o n on the t h i r d arc
i a r c = 3 ; tspan = (/ t2norm , tfnorm /)
c a l l exphv (tspan , n , z2 , i a r c , npar , par , expz2)

s (1 : 6) = z1 ´ expz0 ! Matching cond i t i on
s (7 : 1 2) = z2 ´ expz1 ! Matching cond i t i on
s (13) = H1 ! Contact with the sw i t ch ing s u r f a c e
s (14) = H01 ! Contact o f order 2
s (15) = expz2 (n+1) ´ 1d0 ! T r a n s e r v s a l i t y cond i t i on on ph
s (16) = expz2 (n+2) ! T r a n s e r v s a l i t y cond i t i on on pv
s (17) = expz2 (n) ´ mf ! Fina l cond i t i on on m(t f)� �

Shooting function in sfun.f90

27

4.2.3 User implementation of the main file.

This part is very similar to the one in section 4.1.3. Just note that you can get all the files
from this example typing in your terminal: hampath -example goddardBSB. See paragraph
“Get examples” from section 2.2.4. Just note that the par vector is now:

par “ rΛptf q 1 2 0s.

We get the following results (see figures 12 and 13).

t
0 0.2 0.4 0.6 0.8 1

H
1
(t

)

-5000

-4000

-3000

-2000

-1000

0

1000

t
0 0.2 0.4 0.6 0.8 1

H
0
1
(t

)

-100

-80

-60

-40

-20

0

20

t

0 0.2 0.4 0.6 0.8 1

u
(t

)

0

1

2

3

4

5

6

7

8

9

10

Figure 12: Optimal control, H1pzp¨qq, and H01pzp¨qq.

t
0 0.2 0.4 0.6 0.8 1

h
(t

)

×10
4

0

2

4

6

8

10

12

14

16

18

t

0 0.2 0.4 0.6 0.8 1

v
(t

)

0

200

400

600

800

1000

1200

1400

1600

1800

t

0 0.2 0.4 0.6 0.8 1

m
(t

)

60

80

100

120

140

160

180

200

220

t0 0.2 0.4 0.6 0.8 1

p
h
(t

)

0

1

2

3

4

5

6

7

8

9

10

t
0 0.2 0.4 0.6 0.8 1

p
v
(t

)

0

50

100

150

200

250

t

0 0.2 0.4 0.6 0.8 1

p
m

(t
)

1500

2000

2500

3000

3500

4000

4500

5000

Figure 13: State (top) and co-state (bottom) solution.

28

4.3 An example of changing structure: an homotopy on tf .

Our goal, in this section, is to show how HamPath can handle changing structures in the resolution
of problems like this one. To do so, we will use tf as our homotopic parameter, the same way we
used λ in the simple shooting problem (cf. page 14). We will use the same vector of parameters
as in the Bang-Singular-Bang case (cf. section 4.2).

Main goal.

• Solve (Ptf) for tf ď 70.

• Show the switching times as functions of tf . This gives the evolution of the structure with
respect to the homotopic parameter.

For tf “ 70, the solution is Bang-Singular-Bang as for tf « 206 (see section 4.2). We start
by solving the problem for tf “ 70 and then we decrease tf . We will see that the structure from
Bang-Singular-Bang becomes Bang-Bang and then is only Bang. To capture the information
that the structure has to change when tf get smaller, we use mfun.f90 file which gives the
possibility to check some conditions during the homotopy process. For instance, if t1 ă t2
denote the switching times then we can check if the condition t1 ă t2 is satisfied along the path
of zeros.

To get this example, type in your terminal: hampath -example goddardBB-BSB.

4.3.1 User implementation of hfun Fortran routines.

This implementation is exactly the one developed in the treatment of the Bang-Singular-Bang
solution (cf. section 4.2.1)

4.3.2 User implementation of sfun Fortran routines.

We need here four shooting functions. Two for the Bang-Bang (BB) and Bang-Singular-Bang
(BSB) cases presented in sections 4.1 and 4.2. We need also two more shooting functions, one
for the intermediate case between BB and BSB solutions and another one at the limit of the
BB solutions when they become simply a Bang arc. This last strategy happens when the final
time tf is exactly the time needed to reached the final mass mf with a maximal thrust. The
two first shooting functions are already given, see equations (13) and (14), and the last two are
clear, see the fortran file sfun.f90 from this example.

afun.f90

We are using the same afun.f90 file as in the section 4.2.

sfun subroutine in sfun.f90

The sfun.f90 file used in this case is a concatenation of previous sfun.f90 files, see sec-
tion 4.1.2 and section 4.2.2, with the two other shooting functions. See this file to get details
on how the shooting functions are implemented. We present in the following listing only how
one can deal with several shooting functions using the number of variables, i.e. the length ny
of shooting variables, and the vector par which encodes the structure, see section 4.1.1. This is
an example since here we only need ny.

29

� �
s t r u c t u r e = 0
do i =1,npar´nparmin

s t r u c t u r e = s t r u c t u r e + nint (abs (par (nparmin+i)))
end do

! Limit case
! Bang with one contact o f order 1 with the swi t ch ing mani fo ld
i f (s t r u c t u r e . eq . 1 . and . ny . eq . 4) then

! Case : 1 0
! Bang´Bang
e l s e i f (s t r u c t u r e . eq . 1 . and . ny . eq . 1 0) then

! Limit case : 1 0
! Bang´Bang with one contact o f order 2 with the swi t ch ing mani fo ld
e l s e i f (s t r u c t u r e . eq . 1 . and . ny . eq . 1 1) then

! Case : 1 2 0
! Bang´Singular´Bang
e l s e i f (s t r u c t u r e . eq . 3 . and . ny . eq . 1 7) then

end i f� �
Shooting function in sfun.f90

4.3.3 User implementation of the mfun.f90 file.

In order to stop the homotopy when the structure changes, a monitoring interface can be coded
in an optional mfun.f90 file. Here, we know that the problem is first Bang-Singular-Bang.
Let denote by t1ptf q ă t2ptf q the switching times. We want to stop the homotopy if for a
certain value of tf we have t1ptf q ą t2ptf q. For smaller values of tf we know that the structure
is Bang-Bang with one switching t1ptf q. Again, we stop the homotopy if t1ptf q ą tf . Check
the mfun.f90 file for details on mfun command. We can see in the following listing that the
homotopy will stop with flag = -11 or -12 if a change occurs. To make the homotopy stop one
has to give the flag a value less than -10.� �
np = 1 ! Get the l a s t po int from the path o f zeros , i e y and par
c a l l getPointsFromPath (ny , npar , np , a rc l engths , ys , pars)

t1 = ys (4 , 1) ! The f i r s t sw i t ch ing time

! Bang´Singular´Bang case
i f (ny . eq . 1 7) then

t2 = ys (11 ,1) ! The second swi tch ing t imes

! i f t1>t2 , i t means the s t r u c t u r e has changed from BSB to BB
i f (t1´t2 . ge . 0 d0) then

f l a g = ´11 ! hampath w i l l e x i t with f l a g = ´11
end i f

30

! Bang´Bang case
e l s e i f (ny . eq . 1 0) then

t f = pars (1 , 1) ! The f i n a l time

! i f t1>t f , i t means the s t r u c t u r e has changed from BB to B
i f (t1´t f . ge . 0 d0) then

f l a g = ´12 ! hampath w i l l e x i t with f l a g = ´12
end i f

end i f� �
Monitoring function during homotopy in mfun.f90

4.3.4 User implementation of the main file.

Here we give some parts of the main file. See the main.m file (or main.py or main.f90) to
get more details. The strategy with respect to tf is given figure 14.� �
% I n i t i a l guess
n = 3 ; % Dimension s t a t e
t0 = 0 . 0 ; % I n i t i a l time
t0norm = 0 . 0 ; % Normalized i n i t i a l time
t f = 70 ; % Fina l time
tfnorm = 1 . 0 ; % Normalized f i n a l time
t1 = 5 . 0 ; % F i r s t guessed swi tch ing time
t1norm = (t1´t0) /(t f´t0) ; % Normalized f i r s t guessed swi tch ing time
t2 = 25 .0 ; % Second guessed swi tch ing time
t2norm = (t2´t0) /(t f´t0) ; % Normalized second guessed swi tch ing time
q0 = [0 . 0 0 .0 2 1 4 . 8 3 9] ; % I n i t i a l s t a t e h 0 v 0 m 0
p0 = [5 . 0 100 .0 5 0 0 . 0] ;
% par = [t f alpha beta g0 umax c t0 q0 mf 1 2 0]
par = [t f 0 .01227 0.000145 9 .81 9 .52551 2060 t0 q0 (1) q0 (2) q0 (3)

67 .9833 1 2 0] ’ ;
opt i ons = hampathset % Hampath opt ions
par0=par ; par f=par ; i n d t f =1; par f (i n d t f) =0.0 ; % Homotopy from t f = 70 to 0
nparmin = 11 ;

% I n i t i a l guess
[tout , z , f l a g] = exphvfun ([t0norm t1norm t2norm] , [q0 p0] ’ , [t0norm

t1norm t2norm tfnorm] , opt ions , par) ;
z1 = z (: , 2) ; % z1 = z (t1 , z0)
z2 = z (: , 3) ; % z2 = z (t2 , z (t1 , z0))
yGuess = [p0 t1 z1 ’ t2 z2 ’] ; % yGuess = [p0 , t1 , z1 , t2 , z2]

% F i r s t shoot ing in the Bang´Singular´Bang case
[y0 , s s o l , nfev , njev , f l a g] = s s o l v e (yGuess , opt ions , par) ;

% F i r s t homotopy with Bang´Singular´Bang s t r u c t u r e
parspan = [par0 par f] ;
[parout , yout , sout , ˜ , ˜ , ˜ , ˜ , f l a g] = hampath (parspan , y0 , opt ions) ;

31

i f (f l a g ==´11) % Change in the s t r u c t u r e detec ted : from BSB to BB

% Shooting to get the exact va lue o f t f at the change o f s t r u c t u r e
% The l i m i t s t r u c t u r e i s Bang´Bang with H1(t f) = H01(t f) = 0
par = [parout (1 : nparmin , end) ; 1 ; 0] ;
yGuess = yout (1 : 1 0 , end) ; yGuess (11) = par (i n d t f) ;
[y0 , s s o l , nfev , njev , f l a g] = s s o l v e (yGuess , opt ions , par) ;
t1BSB = y0 (4) ; tfBSB = y0 (11) ;

% Second homotopy with Bang´Bang s t r u c t u r e
par (i n d t f) = tfBSB % Value o f t f when the s t r u c t u r e changes
par0 = par ; par f = par0 ; par f (i n d t f) = 0 . 0 ; parspan = [par0 par f] ;
[parout , yout , sout , ˜ , ˜ , ˜ , ˜ , f l a g] = hampath (parspan , y0 (1 : 1 0) , opt ions) ;

i f (f l a g ==´12) % Change in the s t r u c t u r e detec ted : from BB to B

% Shooting to get the exact va lue o f t f at the change o f s t r u c t u r e
% The l i m i t s t r u c t u r e i s Bang with H1(t f) = 0
par = [parout (1 : nparmin , end) ; 1] ;
yGuess = yout (1 : 3 , end) ; yGuess (4) = par (i n d t f) ;
[y0 , s s o l , nfev , njev , f l a g] = s s o l v e (yGuess , opt ions , par) ; tfBB=y0 (4) ;

end ;

end ;� �
main file

t
f

0 15.42 24.98 70
-5

0

5

10

15

20

25

30

35

40

45

50

t
0

t
1

t
2

t
f

u
max

u
s

0

u
max

0

Figure 14: Homotopy on tf . The structure is Bang-Bang for tf P p15.42 , 24.98s and Bang-
Singular-Bang for tf P r24.98 , 70s. The time tf “ 15.4170957775489 (to be accurate) is the
exact time to reach the final mass mf with maximal thrust. Hence, for smaller tf the final
condition mptf q “ mf cannot be satisfied.

32

5 Install file� �
===

How to install HamPath on Linux or Mac OS X

===

===

0 - Requirements

===

You must read the user guide before proceeding with this installation

Before installing Hampath , you must have an up-to-date

Java Runtime Environment (JRE), the Tapenade software (you can get it

here: http ://www -sop.inria.fr/tropics /), a FORTRAN Compiler and

(you don ’t need to have both):

- a version (3.X at least) of Python with these librairies:

numpy , scipy and matlplotlib; and the extension tool

F2PY (https :// sysbio.ioc.ee/projects/f2py2e /)

- a working Matlab application and well -configured mex -files

===

1 - Installation

===

- Unpack the hampath300 archive in your installation directory

(~/ install_dir for example)

- Go into the newly extracted folder (~/ install_dir/hampath300)

- Launch the setup.sh in a terminal

- Enter the absolute path of your Tapenade installation folder

if asked (~/ install_dir/tapenade)

- Choose how you want to install HamPath:

0) Fortran stand -alone: install Hampath without interface

1) Matlab , via mex -files: install Hampath with a Matlab

interface (make sure your mex -files are well -configured)

2) Matlab or Octave , via text files: install HamPath

with a Matlab or Octave interface with no mex command

3) Python , via f2py tool: install HamPath with a Python

interface which needs numpy , scipy and matplotlib

librairies and f2py extension tool

- HamPath will detect your configuration and allow you to change it

if you want to (for example , you can change the detected f2py

command if it works with a 2.X version of Python to a f2py

working with a 3.X version of python)

- HamPath is installed

===

2 - Documentation

===

33

First thing to read before this document: user_guide.pdf

Licence: LICENSE.txt

===� �
References

[1] A. A. Agrachev & Y. L. Sachkov, Control theory from the geometric viewpoint, vol 87 of
Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin (2004), xiv+412.

[2] E. Allgower & K. Georg, Introduction to numerical continuation methods, vol. 45 of Classics
in Applied Mathematics, Soc. for Industrial and Applied Math., Philadelphia, PA, USA,
(2003), xxvi+388.

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A. Green-
baum, S. Hammarling, A. McKenney & D. Sorensen, LAPACK Users’ Guide, Soc. for
Industrial and Applied Math., Philadelphia, PA, USA, third edn (1999)

[4] V. G. Boltyanskĭı, R. V. Gamkrelidze, E. F. Mishchenko, & L. S. Pontryagin, The math-
ematical theory of optimal processes. Classics of Soviet Mathematics. Gordon & Breach
Science Publishers, New York, (1986), xxiv+360.

[5] B. Bonnard, J.-B. Caillau & E. Trélat, Cotcot: short-reference manual. http: // apo.

enseeiht. fr/ cotcot , Rapport de recherche RT/APO/05/1, Institut National Polytech-
nique de Toulouse, Toulouse, France (2005).

[6] B. Bonnard, J.-B. Caillau & E. Trélat, Second order optimality conditions in the smooth
case and applications in optimal control, ESAIM Control Optim. Calc. Var., 13 (2007),
no 2, 207–236.

[7] B. Bonnard, M. Claeys, O. Cots & P. Martinon, Geometric and numerical methods in the
contrast imaging problem in nuclear magnetic resonance, Acta Appl. Math., 135 (2014),
no. 1, 5–45. PDF.

[8] J.-B. Caillau, O. Cots & J. Gergaud HamPath: on solving optimal control problems by
indirect and path following methods. http://hampath.org

[9] J.-B. Caillau, O. Cots & J. Gergaud, Differential continuation for regular optimal control
problems, Optim. Methods Softw., 27 (2012), no 2, 177–196. PDF.

[10] O. Cots, Geometric and numerical methods for a state constrained minimum time control
problem of an electric vehicle, [Research Report] IRIT/RR–2016–12–FR, IRIT, Toulouse.
2016, pp.35. PDF.

[11] O. Cots, Contrôle optimal géométrique : méthodes homotopiques et applications. Thèse
de doctorat, Institut Mathématiques de Bourgogne, Dijon, France, septembre 2012. PDF.

[12] J. J. Dongarra, J. Du Croz, S. Hammarling & I. S. Duff, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Softw., 16 (1990), no 1, 1–17.

34

http://apo.enseeiht.fr/cotcot
http://apo.enseeiht.fr/cotcot
http://cots.perso.enseeiht.fr/resources/2015-ACTA-cots-preprint.pdf
http://hampath.org
http://cots.perso.enseeiht.fr/resources/2012-OMS-cots-preprint.pdf
http://cots.perso.enseeiht.fr/resources/2016-cots-IRIT-RR-2016-12-FR.pdf
http://cots.perso.enseeiht.fr/resources/2012-these-cots.pdf

[13] J. J. Dongarra, J. Du Croz, S. Hammarling & R. J. Hanson, An extended set of fortran
basic linear algebra subprograms, ACM Trans. Math. Softw., 14 (1988), no 1, 1–17.

[14] R. H. Goddard, A Method of Reaching Extreme Altitudes, volume 71(2), Smithsoian
Miscellaneous Collections. Smithsonian institution, City of Washington, (1919).

[15] E. Hairer, S. P. Nørsett & G. Wanner, Solving Ordinary Differential Equations I, Nonstiff
Problems, vol 8 of Springer Serie in Computational Mathematics, Springer-Verlag, second
edn (1993).

[16] E. Hairer & G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-
Algebraic Problems, vol 14 of Springer Serie in Computational Mathematics, Springer-
Verlag, second edn (1996).

[17] L. Hascoët & V. Pascual, The Tapenade Automatic Differentiation tool: principles, model,
and specification, Rapport de recherche RR-7957, INRIA (2012).

[18] D. H. Jacobson, M. M. Lele & J. L. Speyer, New Necessary Conditions of Optimality
for Control Problems with State-Variable Inequality Constraints, J. Math. Anal. Appl., 35
(1971), 255–284.

[19] H. Maurer, On optimal control problems with bounded state variables and control appearing
linearly, SIAM J. Control Optim., 15 (1971), no. 3, 345–362.

[20] H. Maurer, Numerical solution of singular control problems using multiple shooting tech-
niques, Journal of optimization theory and applications, Vol.18, No.2, (1976).

[21] J. J. Moré, B. S. Garbow & K. E. Hillstrom, User Guide for MINPACK-1, ANL-80-74,
Argonne National Laboratory, (1980).

[22] H. Seywald and E.M. Cliff., Goddard problem in presence of a dynamic pressure limit.
Journal of Guidance, Control, and Dynamics, (1993).

35

	Introduction
	HamPath overview
	Presentation of the overall strategic and algorithmic approach
	Features
	Schematic view of HamPath
	Interface
	Core of HamPath and thirdparty
	Additional information on HamPath code: get examples, helps and options.

	Simple examples
	A simple shooting problem
	User implementation of hfun Fortran routines.
	User implementation of sfun Fortran routines.
	User implementation of the main file.

	A multiple shooting problem
	User implementation of hfun Fortran routines
	User implementation of sfun Fortran routines.
	User implementation of the main file

	Goddard problem
	A Bang-Bang solution: tf = 20.
	User implementation of hfun Fortran routine
	User implementation of sfun Fortran routine
	User implementation of the main file

	A Bang-Singular-Bang solution: tf 206.
	User implementation of hfun Fortran routines.
	User implementation of sfun Fortran routines.
	User implementation of the main file.

	An example of changing structure: an homotopy on tf.
	User implementation of hfun Fortran routines.
	User implementation of sfun Fortran routines.
	User implementation of the mfun.f90 file.
	User implementation of the main file.

	Install file
	References

